Note on the Jordan form of an irreducible eventually nonnegative matrix
نویسندگان
چکیده
منابع مشابه
Note on the Jordan form of an irreducible eventually nonnegative matrix
A square complex matrix A is eventually nonnegative if there exists a positive integer k0 such that for all k ≥ k0, A ≥ 0; A is strongly eventually nonnegative if it is eventually nonnegative and has an irreducible nonnegative power. It is proved that a collection of elementary Jordan blocks is a Frobenius Jordan multiset with cyclic index r if and only if it is the multiset of elementary Jorda...
متن کاملA Note on the Jordan Canonical Form
A proof of the Jordan canonical form, suitable for a first course in linear algebra, is given. The proof includes the uniqueness of the number and sizes of the Jordan blocks. The value of the customary procedure for finding the block generators is also questioned. 2000 MSC: 15A21. The Jordan form of linear transformations is an exceeding useful result in all theoretical considerations regarding...
متن کاملPerron Vectors of an Irreducible Nonnegative Interval Matrix
As is well known, an irreducible nonnegative matrix possesses a uniquely determined Perron vector. As the main result of this paper we give a description of the set of Perron vectors of all the matrices contained in an irreducible nonnegative interval matrix A. This result is then applied to show that there exists a subset A∗ of A parameterized by n parameters (instead of n2 ones in the descrip...
متن کاملTECHNISCHE UNIVERSITÄT BERLIN The Frobenius-Jordan form of nonnegative matrices
In this paper we use preferred and quasi-preferred bases of generalized eigenspaces associated with the spectral radius of nonnegative matrices to analyze the existence and uniqueness of a variant of the Jordan canonical form which we call FrobeniusJordan form. It is a combination of the classical Jordan canonical form in the part associated with the eigenvalues that are different from the spec...
متن کاملInverses of M-type Matrices Created with Irreducible Eventually Nonnegative Matrices
An M-matrix is a matrix that can be expressed as αI − P, where P is entry wise nonnegative and α ≥ ρ(P ). It is well known that the inverse of a nonsingular irreducible M-matrix is positive. In this paper, matrices of the form αI − P, where P is an irreducible eventually nonnegative matrix and α > ρ(P ), are studied. It is shown that if index0(P ) ≤ 1, then there exists a positive number λ such...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Linear Algebra
سال: 2015
ISSN: 1081-3810
DOI: 10.13001/1081-3810.3049